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a b s t r a c t

The electric vehicle (EV) has been developing rapidly and predicting the lifetime of Li-ion batteries in EVs
has become an important issue. Characteristics of human drivers and the battery configuration interact
and both play important roles in determining EV battery lifetime. Moreover, due to the relatively high
cost of real EVs and long testing time for battery life of EVs, it is important to integrate the human driver
and EV battery into one framework and implement it in a driving simulator test-bed. To address this
problem, the current work proposes the first integrated computational humaneelectric vehicle frame-
work (ICHEV) and implemented in a STISIM driving simulator. ICHEV can be used to: 1) Analyze the
effects of driver differences (including driver characteristics, charging strategy, and driving schedule) and
battery configuration on battery lifetime in saving real EV test cost and time; 2) Predict the battery
lifetime given the driver characteristics, driving schedule, and battery configuration; and 3) Obtain the
optimal battery configuration, the optimal driving patterns and charging strategy for the purpose of
maximal battery lifetime. According to the ICHEV, software was developed and further applications of
the ICHEV were also discussed.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Electric Vehicle (EV) technologies have received great attention
due to the potential contributions to reducing carbon dioxide
emissions and energy consumption [1]. EVs differ from fossil fuel-
powered vehicles in that the electricity they consume can be
generated from a wide range of energy, including not only fossil
fuels and nuclear power, but also renewable power from hydraulic,
wind, solar, geothermal, and tidal sources. EVs release almost no
carbon dioxide and air pollutants.

The advancement of EV technologies greatly depends on the
development of battery technologies. Lithium-ion batteries, which
have high-energy storage and power density and competitive cost,
have become the first choice as the power source by major EV
tem Lab, State University of
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manufacturers [2]. Although a lot of research has been conducted
for lithium-ion EV batteries and various performance characteris-
tics have been explored, the Li-ion batteries have not yet been able
to simultaneously meet the intensive energy demands, long life
cycle, and low cost which are unique to vehicular-propulsion
applications [3]. Additionally, battery life in service/usage is
another major concern when consumers consider buying EVs [4].
For example, General Motors (GM) Chevrolet Volt Extended-Range
EV is priced at $40,280 before federal tax credit. The heart of Volt is
the T-shaped lithium-ion battery pack which costs approximately
$10,000 each [5]. If the batteries have a shorter life cycle than the
vehicle itself and need replacement every few years, the high initial
EV cost, battery replacement cost, and charging cost can easily
surpass the cost of a conventional internal combustion engine
vehicle running on gas when distributed over the life cycle of the
vehicle. Thus, improvement in battery life cycle and reliability is
undoubtedly essential before attempting to push potential buyers
to take the plunge.
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The majority of available literature on EV batteries is concerned
with problems such as Li-ion cell electrochemistry and new
materials [6,7], battery dynamics and simulation [8,9], battery
management systems and cell charging/discharging equalization
[8], and environmental impact and sustainability [10,11]. However,
the effects of human factors on the performance of the batteries
have been largely neglected. Only a few studies considered it but
simplified driver as a minor module in their systems [1,12]. For
example, Musardo et al. (2005) used a Driver Module comparing
the desired vehicle speed with the actual velocity and calculating
the accelerator or brake commands through a PI controller [1].
Bowles et al. (2000) simulated the vehicle’s performance with
a Driver model to represent the power demand of the driver [12].
Very few of them considered the role of the human being (the real
manipulator of the EV) in the loop of the EV framework.

Even though real EVs have been used as test-beds for EV
batteries, they are relatively expensive to run the tests and take
a long time to obtain experimental data from. The data collection
involving fifteen EVs lasted two years in Liaw and Dubarry’s work
[13]. Researchers at GM conducted a large scale experiment
spending more than $30,000 for each EV. Even with this large
investment, however, GM could hardly sustain the real driving
experiment of the EVs for more than one year. Moreover, since EV
battery lifetime is usually more than 36 months, it will be quite
time-consuming to obtain the EV battery lifetime data using a real
EV. Due to the high cost of real EVs and EV batteries, a simulated
driving platform integrated with an EV battery simulation module
can be very cost-effective (a desktop version usually cost less than
$2500, e.g., STISIM�) and less time (less than 1 h) without any cost
of gas or battery power.

Moreover, drivers with different personal characteristics (i.e.,
personality, decision making reference (DMR) of speed choice)
exhibit different driving patterns (i.e., speed and acceleration/
deceleration [14];) with their different impacts on EV battery. For
Fig. 1. The integrated humaneelect
example, an increase of driving speed leads to elevated operating
temperature and produces higher discharging power load on EV
batteries [9]. Also, the individual driver exhibits different charging
strategies, which affect the battery lifetime. If a driver chooses to
charge the battery when the residual energy is enough for a daily
commute (conservative charging strategy), the battery is charged
more frequently, which increases the number of
chargingedischarging cycles [15]. Several empirical studies of
driving patterns or driver profiles (e.g., driving distance and driving
speed) and charging strategy were conducted [16e18]. In human
factors related to transportation, driving simulators (e.g., STISIM�

and Drive Safety�) are widely used to simulate various road types
and traffic situations to study driver behavior and their individual
differences; however, few studies integrate an EV battery model or
simulation module into a driving simulator.

The objective of this study was to develop an integrated
computational humaneelectric vehicle framework (ICHEV)
considering both driver behavior and EV battery. ICHEV has been
implemented in a driving simulator (STISIM�) as a cost-effective
test-bed. The human driver experiment was conducted using the
integrated test-bed and ICHEV can be used to: 1) Predict the battery
lifetime given the fixed driver characteristics, driving schedule, and
battery configuration; 2) Generate the optimal battery configura-
tion to maximize the battery life cycle; 3) Provide the individual
driver’s optimal driving patterns and charging strategy for the
purpose of maximal battery lifetime. According to the ICHEV,
software was also developed to facilitate the achievement of these
three objectives.

The remainder of this paper was organized as follows. Section 2
described the ICHEV and each element in the framework. Section 3
introduced the methods to optimize the battery configuration or
driving patterns and charging strategy. Section 4 described the
details of an experimental study to validate the ICHEV and examine
the factors (both human and engineering) that have significant
ric vehicle framework (ICHEV).
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effects on battery lifetime. According to the ICHEV, software was
developed and presented in Section 5. The conclusion and discus-
sion of future work are presented in Section 6.

2. The integrated computational humaneelectric vehicle
framework

An integrated computational humaneelectric vehicle frame-
work was developed to take both human and engineering factors
into account on the EV platform. The basic architecture of the
ICHEV consisted of five major elements: driver characteristics,
driving patterns, driving schedule, battery charging strategy, and
EV battery simulation and lifetime prediction module. As shown in
Fig. 1, driving patterns (See Section 2.1 in details), driver charac-
teristics (See Section 2.2 in details), and driving schedule (See
Section 2.3 in details) interacted to determine the battery charging
profile module (See Section 2.4 in details). Driving patterns,
charging strategy, and the battery configuration interacted to
predict the lifetime of the plug-in EV battery (See Section 2.5 in
details).

Moreover, ICHEV has been implemented in a desktop version of
a driving simulator (STISIM�) and with another computer. When
a driver operates the driving simulator, the simulator collects his or
her driving behavior in real time (e.g., speed and acceleration) and
sends this information to an EV battery simulationmodule installed
on the other computer. The battery simulation module then sends
battery status information to the driver via the on-board display
(See Fig. 2).

2.1. Driving patterns module

The driving patternsmodule considered two vehicle variables as
model inputs: speed (v) and acceleration (a). In this work, these
driving variables were collected from the driving simulator that
was connected to the battery simulation and lifetime prediction
module (See Fig. 2). More specifically, the driving simulator
collected driving speed and acceleration at each time interval,
recorded as inputs in the battery simulation module. Based on
these driving data, the battery simulation module calculated the
energy consumption spent driving and the residual energy. The
information regarding residual energy was sent back to the driving
simulator and displayed on the bottom right corner of the
dashboard.

2.2. Driver characteristics module

The Driver characteristics module consisted of three individual
factors: personality, decisionmaking reference (DMR), and charging
strategy. Personality refers the impulsiveness of a driver. Decision
making reference (DMR) refers to the magnitude of speed if a driver
tends to exceed the posted speed limit. Zhao and Wu (2011) found
that drivers with different personalities and decision making
Fig. 2. Implementation of ICHEV in STISIM� driving simulator with EV battery simu-
lation module.
references (DMR) have different behaviors of speed controls [14],
which lead to different energy consumption spent driving [9]. In this
paper, charging strategy refers to the percentage of the battery
residual energy after the daily commute at which a driver decides to
charge the battery. If a driver charges the battery at a higher
percentage of the residual energy, he or she might charge the
battery more often, which eventually shortens the battery lifetime
[19]. Thus, a driver’s charging strategy determines the charging
frequency, which directly influences the battery lifetime.

2.3. Driving schedule module

The Driving schedule module provided a driver’s daily driving
distances on each type of road as model inputs. The daily driving
distance was calculated based on a driver’s daily commute distance
on weekdays, driving activities (e.g., shopping) on the weekend,
and driving plans on holiday or vacation. Road type consisted of
two conditions: urban and highway. Accordingly, the average daily
energy consumption (E) was the sum of the energy consumed on
urban road (Eu) and highway (Eh) (See Equation (1)).

E ¼ Eu þ Eh ¼ Du

du
eu þ Dh

dh
eh (1)

Where, Du and Dh are the real driving distances on the urban road
and highway. du and dh are the driving distances on the urban road
and highway in a simulated driving task. eu and eh are the energy
consumptions on the urban road and highway which are collected
from the driving simulator.

2.4. Battery charging profile module

Driving patterns, driver characteristics, and driving schedule
interacted to determine the battery charging frequency. As shown
in Equation (2), the battery charging frequency (f) was equal to the
ratio of the average daily energy consumption to the average
battery energy consumption within one charging interval.

f ¼ E
ð1� qÞ$Q (2)

Where qwas the average percentage of the battery residual energy
leading the driver charging the battery, Q is the battery capacity.

2.5. Battery simulation and lifetime prediction module

As illustrated in Fig. 1, both human and engineering factors
affected the EV battery lifetime. The most direct factors were the
operation temperature (T), charging frequency, the average daily
energy consumption, and the battery capacity when it is manu-
factured (Q0) (See Equation (3)). The operation temperature is the
temperature at which an EV battery operates. It was affected by the
initial temperature, open circuit voltage, operation voltage, the
current of the battery, the heat capacity of the battery, and the heat
management module. The open circuit voltage, operation voltage,
and current of the battery are affected by State of Charge (SOC). All
connections (from A to J) proposed in the battery simulation and
lifetime prediction module, equations, parameter settings, and
references were summarized in Appendix A.

LT ¼ 167:583� 1:264$T � 100$E=Q0

0:097$f
(3)

According to the ICHEV, in the following section, we provided
the algorithms to optimize the battery configuration, driving
patterns, and charging frequency for the maximal battery lifetime.



2 If the residual energy is less than the energy consumed per day, the driver has
to charge the battery for the purpose of daily commute, which is not the charging
strategy that we expect. Instead, we are interested in how a driver makes a decision
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3. Optimization of the battery configuration, driving
patterns, and charging strategy

The sequential quadratic programming (SQP) was used to
optimize the battery configuration for the purpose of maximal
battery lifetime given a driver’s driving patterns, driver character-
istics, and driving schedule [20,21]. The SQP was also performed to
optimize the individual driver’s driving patterns and charging
strategy for the same purpose based on the fixed battery configu-
ration. A General Problem (GP) was described as follows (where x is
the vector of length n design parameters, and f(x) is the objective
function1):

min
x

f ðxÞ ¼ min
x

1:264$T þ 100$E=Q0 � 167:583
0:097$f

Subject to

8>><
>>:

80 � N � 320

720 � Cp � 1020

0 � Dheat � 380

(4)

4. An experimental study of ICHEV

An experiment with real human drivers was conducted with the
new driving simulator test-platform. Driver characteristics, driving
schedule, and charging strategy were obtained through question-
naires. Driving patterns were collected from a driving task close to
real-world daily driving scenarios. From this experimental study,
each participant’s energy consumption in daily driving was
obtained based on his/her driving schedule and driving patterns.
Then, the predicted EV battery lifetime was calculated for each
driver. Next, the effects of driver characteristics, driving schedule,
and battery configuration on battery lifetime were analyzed.
Finally, the optimal battery configuration, driving patterns, and
charging strategy were obtained.

4.1. Participants

Twelve drivers (6 males, 6 females) ranging from age 26 to 50
(M ¼ 34.5, SD ¼ 5.58) took part in this study. The average driving
experience was 4.76 years and average annual mileage was 9200
miles. All of them had valid drivers licenses, at least three years
driving experience, and had driven within the past month.

4.2. Self-report measures

All participants were asked to complete a set of questionnaires
after engaging in the driving task. The first questionnaire was
designed to obtain each participant’s demographic situation (such
as age, gender, etc), driving history (such as estimated cumulative
driving mileage, the year a drivers license was first issued, etc), and
driving schedule (such as daily/weekly/monthly/yearly driving
distance, road type, etc). Secondly, all participants were required to
construct a subjective value matrix regarding their attitudes
towards the cost and/or benefit of speeding, from which decision
making references were obtained (For a detailed description of this
questionnaire and decision making reference calculation (see Ref.
[14,22])). Thirdly, a short form of the Revised Eysenck Personality
Questionnaire (EPQR-S [23],) was used to divide all drivers into
1 The optimal battery configuration was first generated for the average driver:
heat capacity was 1020 (range ¼ 700e1020 J kg�1 K�1 [27],), heat reduction was
380 (range ¼ 0e380 W m�2 K [27],), and the number of cells in the battery pack
was 320 (range ¼ 80e320 [28,36e38],]) given T0 ¼ 10 �C.
three categories: normal drivers (those characterized as Eþ and N�
or E� and Nþ, n ¼ 6); impulsive drivers (those characterized as Eþ
and Nþ, n ¼ 3); and non-impulsive drivers (those characterized as
E� and N�, n ¼ 3). Finally, at the end of each simulated trip, the
driving simulator test-bed asked each participant if he or shewould
charge the battery under different charging conditions.2 As shown
in Fig. 3 and Fig. 2, the dashed bars indicate the energy consump-
tion during the daily commute and the black bars indicate the
residual energy after a driver’s daily commute.

According to drivers’ responses, the percentage of the battery
residual energy after a driver’s daily commute (q) was computed as
follows:

q ¼
P25

i¼1 qi$hiP25
i¼1 hi

ðhi

¼ 1 if the driver answers }Yes}; otherwise hi ¼ 0Þ (5)

4.3. Apparatus

A STISIM� driving simulator (STISIMDRIVE M100K) was used in
the experiment (See Fig. 2). It includes a Logitech Momo� steering
wheel with force feedback, a throttle pedal, and a brake pedal. The
STISIM simulator was installed on a Dell Workstation (Precision
490, Dual Core Intel Xeon Processor 5130 2 GHz) with a 256 MB
PCIe � 16 nVidia graphics card, Sound Blaster� X-Fi� system, and
Dell A225 Stereo System. Driving scenarios were presented on a 27-
inch LCD with 1920 � 1200 pixel resolution.
4.4. Driving scenario and measurement

The Test Block simulated a 16-mile commute environment
based on the average daily commute profile (the average one-way
commute time in the United States is 26 min and commute
distance is 16 miles) [16]. It consisted of 55% urban driving and 45%
highway driving [24]. Therefore, the Test Block was divided into
three sections: the first being 30% of driving on urban, the middle
being 45% of driving on highway, and the last being 25% of driving
on urban again. The speed limits ranged from 25 to 55 mph on the
urban road and were set at 65 mph on the highway. Participants
were instructed to follow the speed limit and adjust their speed as
if they were driving a real vehicle on the road throughout the task.

Behavioral measures from the driving simulator Test Block were
automatically collected: time elapsed (unit in second), speed
(ft s�1), acceleration (ft s�2), and distance (feet). These experi-
mental driving data were used to obtain the battery energy
consumption.3
4.5. Results

4.5.1. Energy consumption and predicted battery lifetime
The battery energy consumption in the driving task was calcu-

lated based on participants’ driving variables. The battery energy
consumption in each participant’s daily driving was then obtained
using Equation (1) based on his/her own driving schedule.
on battery charging when the residual energy is no less than the daily energy
consumption. As a result, there were 25 combinations that met the requirements.

3 These driving variables were used to calculate the energy consumption of the
battery in the driving task in accordance with Peterson et al. (2010)’s work [9] so
that ICHEV’s prediction can be compared with the results in Peterson et al. (2010)’s
work (See Results section and Appendix B in detail).



Will you charge the battery?                Yes      No

80% before commute
30% you have used

50% left

Fig. 3. A sample question of the EV battery charging survey.
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Participants’ personalities, decision making references, and
charging strategies were derived from their self-report measures. It
is assumed that Cp ¼ 795 J kg�1 K�1, Dheat¼ 0 and N¼ 288, and the
ambient temperature is at a constant level: T0 ¼ 10 �C. The
participant’s battery charging frequency was then calculated using
Equation (2). The driver characteristics, driving schedule, and pre-
dicted battery lifetime are shown in Table 1.

As shown in Table 1, the averaged predicted battery lifetime was
110.1 (SD ¼ 26.6) months. GM expects that the lifetime of its EV
battery should be no less than 96 months [25]. As a result, we
compared the predicted battery lifetime with the expected lifetime
using the One-Sample T Test (H0:m ¼ 96, H1:m > 96). The result
showed that we rejected the null hypothesis (t(11) ¼ 1.83, p¼ .047)
and concluded that the predicted battery lifetimewasmore than 96
months in this experiment. This was consistent with GM’s pub-
lished EV battery lifetime expectation and warranty [25], which
meant that the EV battery could sustain longer than 96 months for
the average driver.

In addition, before predicting the battery lifetime for each
participant, we compared the capacity degradation between
ICHEV’s predictions and the simulated results from [9] based on the
same driving variables in their study, and found no significant
differences (See Appendix B). This also verified by the predicted
lifetime from ICHEV.

4.5.2. Effects of driver characteristics and battery configuration on
EV battery lifetime

In the second step, we performed regression analysis using SPSS
[26]. Eleven variables entered as regressors: driver characteristics
(personality, decision making reference, and charging strategy),
driving schedule (driving distance on highway on the weekday,
driving distance on highway on the weekend, driving distance on
urban road on the weekday, and driving distance on urban road on
the weekend), and battery configuration (heat capacity, heat
reduction, the number of the cell, and initial temperature). To
predict the battery lifetime, each battery configuration was
assumed to have two levels: heat capacity (Cp ¼ 707 or
1019 J kg�1 K�1), heat reduction (Dheat ¼ 0 or 34 W m�2 K), the
number of the cell (N ¼ 200 or 228), and initial temperature
(T0 ¼ 10 or 30 �C). As a result, there were 2 � 2 � 2 � 2 ¼ 16
Table 1
Participants’ characteristics, driving schedule, and predicted battery lifetime.

Participants (drivers) Personality DMR (mph) Charging strategy (%

1 Normal 0 40
2 Impulsive 10 60
3 Non-impulsive 5 40
4 Normal 0 20
5 Non-impulsive 5 50
6 Normal 0 30
7 Non-impulsive 0 40
8 Normal 0 20
9 Normal 0 20
10 Impulsive 0 20
11 Impulsive 0 50
12 Normal 0 40
combinations in which we changed the battery configuration to
predict the battery lifetime.

The regression model accounted for 70% of the variability in the
data set (adjusted R-square ¼ 0.7). The ANOVA results showed that
the overall regressionwas significant (F(1,191) ¼ 41.576, p < .0001).
The regression results indicated a significant decreasing effect of
personality on battery lifetime (t ¼ �4.796, p < .0001). Those
drivers who were characterized as non-impulsive could use the
battery for a longer period of time than impulsive or normal
drivers. Charging strategy had a significant, negative effect on
battery lifetime (t ¼ �3.986, p < .0001). The battery lifetime was
expected to increase 2.85 months when the charging strategy
decreased by 1%. The initial temperature had a significant
decreasing effect on battery lifetime (t ¼ �3.471, p ¼ .01). The
battery lifetime was expected to decrease 1.38 months if the initial
temperature increased 1 �C. All driving distance variables had
significant, negative effects on battery lifetime: driving distance on
the highway on the weekday (t ¼ �12.450, p < .0001), driving
distance on an urban road on the weekday (t ¼ �2.421, p ¼ .016),
driving distance on the highway on the weekend (t ¼ �4.798,
p < .0001), and driving distance on an urban road on the weekend
(t ¼ �6.938, p < .0001).

Based on regression results, a linear equationwas built to express
the relationship between battery lifetime and all significant regres-
sors (See Equation (6)). These factors included: personality, charging
strategy, initial temperature T0, driving distance on highway road on
the weekday (Dhd), driving distance on urban road on the weekday
(Dud), driving distance on highway road on the weekend (Dhe), and
driving distance on urban road on the weekend (Due).

Lifetime¼ 393:768�35:1552Personality�2:85Charging

�1:382T0�9:716Dhd�2:592Dud�4:361Dhe

�11:533Due (6)

4.5.3. Optimal battery configuration, driving patterns, and charging
strategy

The optimal battery configuration was generated for all partic-
ipants: the optimal heat capacity was 1020 J kg�1 K�1

(range ¼ 700e1020 [27]), the optimal heat reduction was
380Wm�2 K (range¼ 0e380 [27]), and the optimal number of cells
in the battery pack was 320 (range ¼ 80e320 [28,36e38]) given
T0¼ 10 �C. These results indicated that themaximal battery lifetime
could be achieved by means of maximizing the heat capacity, heat
reduction, and the number of cells in the pack. It is expected that
battery manufacturers can mass produce battery packs following
these optimal configurations and do not need to customize each
pack for different drivers.
) Driving schedule (mile) Predicted battery
lifetime (months)

Weekday Weekend

Highway Urban Highway Urban

0 12 0 12 91
0 12 0 6 110
0 8 0 8 158
0 5 20 10 98
5 5 5 5 120
0 10 0 10 133
0 25 0 8 75

24 6 0 0 75
0 15 0 15 105
0 8 0 8 151

12 12 0 0 109
0 17 0 12 96
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In the second step, the optimal driving patterns and charging
strategy were predicted for the individual driver given the fixed
battery configuration (Cp ¼ 1000.4 J kg�1 K�1, N ¼ 200
Dheat ¼ 34Wm�2 K and T0 ¼ 10 �C) and driving schedule (8.8 mile
on the urban road and 7.2 mile on highway). The optimal acceler-
ation (after the desired target speed was reached) was zero. The
optimal changing frequency was roughly once every 2e5 days (See
Table 2). For example, if a driver’s optimal charging interval was 2.5
days, his/her best charging strategy was to charge the battery after
two days, then recharge it after three days.
5. Software built based on the ICHEV

Software was developed to predict the battery lifetime and
optimize the battery configuration, driving patterns, and charging
strategy. User interfaces are shown in Fig. 4(a)e(c). In order to
predict the battery lifetime, driver characteristics, including
personality, decision making reference, and charging strategy, are
needed. These measures could be collected from the driver’s self-
reports when he or she considers buying the EV. Driving
schedule (daily driving distance and road types) could be estimated
by the driver or automatically recorded by the advanced technol-
ogies installed in the car (e.g., GPS). For a specific type of EV battery,
its configuration is fixed so that the lifetime can be predicted based
on the driver characteristics and driving schedule (See Fig. 4(a)).

Another important function of the software was to optimize the
battery configuration to prolong the battery life cycle. This could
help EV manufacturers or engineers customize the battery config-
uration for each user. Specifically, when the driver considers buying
the EV, he or she can provide the information about his/her personal
characteristics (personality, DMR, and charging strategy) and esti-
mate driving/living schedule. Given this information, the manufac-
turers can optimize the battery configuration (e.g., the thermal
management module) to prolong the life cycle (See Fig. 4(b)).

Finally, the software was able to provide the driver the optimal
driving patterns (speed and acceleration) and charging strategy to
prolong the battery lifetime. As shown in Fig. 4(c), when the
information about driving schedule and battery configurationwere
given, the optimal driving patterns and charging strategy could be
predicted and presented via a visual/auditory or combined user
interface. More importantly, when the information changed (e.g.,
real driving distance was much longer than the driver’s expecta-
tion), the software could update the optimal driving and charging
strategy in real time.
6. Discussion

In this work, an integrated computational humaneelectric
vehicle (ICHEV) framework was developed to investigate the
Table 2
Optimal charging strategy.

Participants (drivers) Optimal charging frequency (1/day)

1 0.3 (About once every 3 days)
2 0.4 (About once every 2 days)
3 0.3 (About once every 3 days)
4 0.4 (About once every 2 days)
5 0.3 (About once every 3 days)
6 0.2 (About once every 5 days
7 0.4 (Once every 2 days)
8 0.3(About once every 3 days)
9 0.2 (About once every 5 days)
10 0.2 (Once every 5 days)
11 0.5 (About once every 2 days
12 0.3 (Once every 3 days)
effects of the driver differences (personality, DMR, charging
strategy, driving patterns, and driving schedule) and battery
configuration on battery lifetime. This work was one of a few
computational models that considers the effects of both human
factors and engineering variables on the performance of the EV
battery. ICHEV implemented in a desktop version of the driving
simulator (STISM) provides a cost-effective and timesaving plat-
form to test the effects of various driver behaviors on EV battery
lifetime, compared to real EVs.

As a case study, a laboratory experiment using the driving
simulator implemented ICHEV was conducted to predict the life-
time of Li-ion batteries in EVs. Driving patterns (e.g., driving speed
and acceleration) were recorded from the driving simulator.
Drivers’ characteristics and driving schedule were collected and
derived from the self-reported measures. According to the ICHEV,
the predicted battery lifetime was no less than 96 months, which
was consistent with the expectations and warranty of the EV
battery manufactures (e.g., GM). Moreover, ICHEV’s prediction is
consistent with the results of other EV battery studies (e.g.Ref. [9]).

Additionally, the current experimental results show that the
driver differences in personality, charging strategy, and driving
schedule significantly affected the battery lifetime. The lifetime of
batteries tended to be longer for those drivers who were charac-
terized as non-impulsive, charged the battery less frequently and/
or had a shorter driving distance for a daily commute.

Sequential quadratic programming (SQP) was used to optimize
the battery configuration for the purpose of maximal battery life-
time. The results suggested that the maximal battery lifetime could
be achieved by means of maximizing the heat capacity, heat
reduction, and the number of cells in a battery pack. Nowadays, the
typical heat capacity for a Li-ion battery is 795 J kg�1 K�1, which is
highly dependent on the chemical and physical material made of
the battery [27]. Heat reduction relies on the type of thermal
management module. For example, the heat transfer coefficient of
oil is 1.5e3 times higher than air and the heat transfer rate of water
for indirect cooling is about 15 times greater than air [27].
Accordingly, developing a convenient thermal management
module with high-performance was expected to significantly
prolong the battery lifetime. The third way to prolong the battery
lifetime was to maximize the number of cells in the battery pack.
However, this would increase the volume and cost the battery pack
inevitably. Battery cells with smaller size and lower cost are more
likely to achieve longer battery lifetime.

SQP was also performed to optimize the individual driver’s
driving patterns and charging strategy for the same purpose of
maximal battery lifetime. The optimal accelerationwas predicted to
be 0 after a driver reached his/her desired target speed. This indi-
cated that a driver should try his/her best to maintain a constant
speed after reaching the desired speed and avoid stepping on the
pedal too strongly (e.g., panic braking). Avoiding frequent and
unnecessary battery charging is another way to prolong the battery
lifetime. For example, do not charge the battery if the residual
energy is enough for another daily commute. Since there are few
charging links built currently, people can only charge the vehicle
after the one day driving. GM has reported that a 240-V charging
link will replenish the battery in about 4 h (where it takes 10 h
using 120-V household current) [28]. With the development of the
quick charging station, people may charge the battery at their work
places or nearby. This will make the charging process more
convenient and the charging frequency easy to reach the optimal
value.

The users of ICHEV and its driving simulator can easily modify
different driver characteristics, different road and traffic situations
via setting the simulator, and different configurations of EV battery.
According to the ICHEV, software was developed to predict the



Fig. 4. (a). Prediction of the battery lifetime; (b). Optimal battery configuration; (c). Optimal driving patterns and charging strategy.
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battery lifetime and optimize the battery configuration, driving
patterns, and charging strategy. This software can be embedded in
the computer system of the real car and has practical applications.
For example, when a driver considers buying an EV, he or she can
provide the information about his/her personal characteristics
(such as personality and decision making reference) and estimate
the daily driving schedule as possible. Given this information, the
software can help the manufacturers or engineers customize the
battery configuration for the maximal battery life cycle. Addition-
ally, the software can provide the driver with the optimal driving
and charging strategy via an in-vehicle humanemachine interface
(HMI). Also, if the real driving schedule (measured by the global
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position system or other technologies installed in the vehicle) is
largely different from the driver’s estimation (e.g., real driving
distance is much longer than expectation), the software can
provide the optimal driving and charging strategy in real time.

The current experimental settings using the driving simulator
saved a large amount of time and money with ability to simulate
various traffic and road situations. The current driving scenario in
the experiment simulated a regular or daily driving situation in
North America, but it can easily changed to highly congested
driving situation in cities or other driving situations or different
roads. Only 1 h was required per participant for this experiment.
The cost of the driving simulator is only 2500 dollars, much less
than a real EV. Compared to existing research, the framework in the
current study took more comprehensive factors into account. In
particular, this study considered the impact of human beings to the
battery lifetime. Since the human is the real user of the vehicles,
taking the human into account could establish a more complete
humaneelectric vehicle system and predict the battery lifetime
more accurately. Furthermore, for a specific driver whose personal
characteristics are known, the optimal battery configuration could
be predicted for the maximal battery lifetime. These predictions
could be utilized by the battery manufactures to adjust the
parameters of the battery for a certain type of driver. Similarly, for
a certain type of EV battery (battery configuration is fixed), the
driver could be informed of the optimal driving pattern and
charging behavior to prolong the battery lifetime. Considering the
high cost of the Li-ion battery, this study would provide high
economic value for both battery manufactures and EV users.

In reality, it is possible to modify and improve driver behavior
both in charging and driving the vehicle. For the optimal charging
Appendix A. Summary of the links, equations, parameter settings,

Table A
Summary of the links, equations, parameter settings, and references in

Link number Link connection Equation and descrip

(A)

f ¼ E
ð1� qÞ$Q

f is the charging freq
E is the average daily
q is the average perc
energy leading the d
Q is the battery capa

(B)

LT ¼ 167:583� 1:26
0:0

T is the operating tem
Q0 is the initial capac
manufactured
f is the charging freq
LT is the time elapse
(day)

(C)

_q0gen ¼ I0
�
U0
ocv � U0

op
_q0gen is the heat gene
I0 is the current of on
U0
ocv is the open circu

U0
op is the operating
behavior, it is possible that we inform different drivers for their
optimal charging frequency (See Table 2) via different messages or
instructions in the vehicle (They can either be displayed on the
dashboard of vehicles or played to drivers via speakers) when the
vehicle is stopped. Empirical studies have shown that well-designed
in-vehiclemessages presented to drivers canmodify driver behavior
(E.g., Zhao & Wu, 2012) [39]. For the optimal driving behavior, this
current work’s optimal driving behavior is keeping the acceleration
(after the desired target speed was reached) close to zero. We
acknowledge that it is hard to modify driver behavior given the
dynamic traffic flow and relatively stable human behavior pattern.
However, in free-driving and straight road situations (no leading
vehicle or it is very far from the current driver and there is no other
vehicles nearby), empirical studies (e.g., Wu et al., 2011) showed
that driver behavior can be changed to optimize the energy usage
for vehicles via proper design of in-vehicle display and training [40].

There are some limitations in this study. Firstly, the experiment
used a driving simulator to obtain the driver’s driving profiles and
charging strategy, which may be different from their real driving
and charging behavior. Secondly, because of the high complexity of
the Li-ion battery, some factors were not considered at the current
stage due to their minor effects on battery lifetime (such as the loss
of lithium). More studies of the EV battery in either real cars or
simulated experimental settings are expected in the future to
validate the framework and predictions of the ICHEV.
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the battery simulation module.

tion of each variable Parameter setting and reference

(2)

uency of the battery (1/day)
energy consumption (J)

entage of the battery residual
river charging the battery (%)
city (J)

4$T � 100$E=Q0

97$f
(3)

perature of the EV battery (�C)
ity of the battery when it is

uency of the battery (1/day)
d since the battery is manufactured

cb ¼ 167.583
cT ¼ �1.264
cN ¼ 0.097
Ref. [30,31]

�
� I0T

dU0
ocv

dT
(7)

ration rate of one cell
e cell (A) (I > 0 for discharge)
it voltage of one cell (V)
voltage of one cell under load (V)

Ref. [32]



Table A (continued )

Link number Link connection Equation and description of each variable Parameter setting and reference

(D)

U’
ocv ¼ �1:031e�35�SOC þ 3:658þ 0:2156� SOC� 0:1178

� SOC2 þ 0:321� SOC3

(8)

SOC is state of charge

Ref. [33]

(E)

SOC ¼ e
Q

(9)

e is the energy left in the battery (J)

(F)
Uop ¼ Uocv � IZeq (10)
P ¼ Uop$I ¼ n$U0

op$I (11)

I ¼
n$U’

ocv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n$U’

ocv

�2�4Zeq$P

r

2Zeq
(12)

Uop is the operating voltage of the battery pack under load
(V)
Uocv is the open circuit voltage of the battery pack (V)
I is the current of the battery pack (A) (I > 0 for discharge)
Zeq is the internal impedance of the battery pack (Ohm)
P is the power consumption of the battery pack (W)
n is the number of cells in a serial within the battery pack
U0
op is the operating voltage of one cell under load (V)

(G)
T ¼ T0 þ DT

¼ T0 þ ca þ ct$t0 þ cR$CR þ cH

�P
_qDt

t0$N
� Dheat

N

�
þ cc$Cp

(13)
T0 is the initial temperature of the battery during the
operation process (�C)
Dt is the time interval the driving profile is recorded by the
related device (s)
t0 is continues operation time of the battery in one time (s)
CR is the discharge rate of the battery
_q is the heat generation rate of the battery pack (W)
N is the number of cells in one battery pack
Dheat is the difference heat transfer rate generated by other
types of
cooling module comparing to the air-cooling module (W m
�2 K)
CP is the heat capacity of the battery (J kg�1 K�1)

ca ¼ 0.0339
ct ¼ 0.004
cR ¼ 0.001
cH ¼ 2.385
cc ¼ �0.004
CR ¼ P/1.25, P/2, P/3
CP ¼ 707 or 1019
Ref. [27]

(H)

p ¼
�
maþ 1

2
rv2CdAþ Crrmg

�
0:4v (14)

p ¼

�
maþ 1

2
rv2CdAþ Crrmg

�
v

0:8
(15)

p is power consumption for vehicle motion (W)
m is the mass of the vehicle (kg)
v is the velocity of the vehicle (m s�1)
a is the acceleration of the vehicle (m s�2)
r is roughly air weight at sea level (kg m�3)
Cd is the vehicle’s coefficient of drag
Crr is the coefficient of rolling resistance for the tires
A is frontal area of the vehicle (m2)

Ref. [9,34]
m ¼ 1588
A ¼ 2.67
r ¼ 1.23
Cd ¼ 0.28
Crr ¼ 0.01
Ref. [9,35]

(continued on next page)
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Fig. A. Comparisons of modeled capacity degradation in current study with simulated capacity degradation in Ref. [9].

Table A (continued )

Link number Link connection Equation and description of each variable Parameter setting and reference

(I)

CR ¼ I0

I’rate
(16)

I’rate is the rated current of one battery pack (I)

(J) There are no equations in Link J. The overcharge/discharge
protection is used to prevent the current or voltage
becoming too high.
The high voltage or current is harmful to the battery and
may destroy
the battery in a short time.

Ref. [32]
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Appendix B. Validation of the battery simulation and lifetime
prediction module

Peterson et al. (2010) constructed a simple physics model to
compute the energy needed to propel a typical electric vehicle. The
driving profile was created by sampling the Urban Dynamometer
Driving Schedule (UDDS) [29]. The testing was conducted with
Arbin BT2000 series battery cyclers to simulate the
chargeedischarge cycles of the Li-ion battery in EV. Each cycle
represented a single driving day. In this study, ICHEV’s predictions
of the capacity degradation were compared to Peterson’s results
using Paired Samples Test. It was shown that there was no signif-
icant difference between Peterson’s simulated results and ICHEV’s
predictions (t ¼ �1.44, p > .05).
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